
Java Music Specification Language and Max/MSP

Nick Didkovsky*, Langdon Crawford†
*Rockefeller University

didkovn@mail.rockefeller.edu, www.algomusic.com
†New York University

langsound@langdoncrawford.com

Abstract
Java Music Specification Language (Didkovsky, Burk 2001)
is a Java package for algorithmic music composition,
notation, and interactive performance. Max/MSP (Puckette,
Zicarelli) is a graphical environment for music, audio, and
multimedia. The introduction of a Java API to Max/MSP
offers new possibilities for rich interaction between JMSL
and Max. This paper presents new tools for bidirectional
interaction between JMSL and Max/MSP. A MaxObject is
presented that transcribes and notates Max-generated
melodies using JMSL’s Score package. Then we present a
general purpose interface through which JMSL can control
Max/MSP patches in real-time.

1 Introduction
Since its initial release, Java Music Specification

Language has provided a flexible, portable, and stylistically
neutral Java API for the algorithmic composer and
performer. Its Java foundation along with its support for
audio output via MIDI and JSyn (Burk 1998) enables
compositions and interactive performance instruments to be
deployed on the web and as standalone applications, while
offering the composer the power of a full featured
programming language.

Max/MSP is a widely used graphical environment for
creating computer music and multimedia works using a
paradigm of units and connections. While Max is not a
general purpose programming language, the rich body of
work created in Max speaks for its flexibility and ease of
use.

The introduction of a Java API to Max offers us the
unique opportunity to program interactions between the two
environments. Max users can leverage off JMSL’s
polymorphic hierarchical scheduler, true object oriented
programming with well defined musical abstractions,
transcription, and common music notation. JMSL users can
benefit from the rich set of units available for Max, such as
units that read real time sensor data, the MSP sound engine,
and the ease with which graphical user interfaces can be
built.

2 Max to JMSL: transcribing Max-
generated melodies

While generating algorithmic melodies with Max is
straightforward, notating these melodies is not. It is of
course possible to capture a performance as a MIDI file and
load the MIDI file into a commercial notation program, but
not all such applications handle transcription well, and in all
cases, much musical intelligence is lost in the process of
writing out a MIDI file.

JMSL’s Transcriber performs a heuristic search on
musical input and transcribes it to common music notation
(Didkovsky 2004). Via Max’s Java API, we show here a
straightforward tool for transcribing Max melodies into
JMSL without ever leaving the Max environment.

JMSL ships with a Java class called JMSLMaxNotate
which extends MaxObject. JMSLMaxNotate supports the
following messages: startCapture, stopCapture, printCapure,
and transcribe. It has public “pitch” and “vel” ports, through
which it receives MIDI style note data. A bang message
causes it to capture a time-stamped pitch/vel pair from Max.

The patch in figure 1 generates a melody using chance
operations. The pitch and vel outputs of the melody
generator connect to the JMSLMaxNotate unit.

Figure 1. An example of the JMSLMaxNotate patch,

showing an algorithmic melody generator which JMSL
captures and notates

When the user clicks startCapture, JMSLMaxNotate
starts logging the pitch/vel data it receives on every bang.
Sending a “transcribe” message triggers JMSL’s Transcriber
to operate on captured event data, generating a JMSL Score,
which opens in a new window (see fig 2).

Figure 2. JMSL transcription of a melody generated by Max

The score can be further edited by hand or
algorithmically mutated using JMSL’s various transform
classes and plug-ins. It can be saved and reopened later in
JMSL outside the Max environment. The score can also be
exported to San Andreas Press’s SCORE Music
Typography System, or in MusicXML format for import
into Finale.

Source code for JMSLMaxNotate is provided in the
JMSL distribution, so users have a model to extend and
write their own custom versions. Customizations might
choose to preserve higher level musical ideas such as
algorithmically generated lyrics, dynamic marks, and
expression symbols. These could be sent to new public
fields added to a subclass of JMSLMaxNotate. Such
properties, which would otherwise get lost by writing to a
MIDI file, could be piped directly to JMSL at the moment
they are generated by Max, preserving their musical
meaning.

3 JMSL to Max
We have created a general purpose interface through

which JMSL can control Max/MSP instruments in real-time.
This consists of tools built in both JMSL and Max. Both sets
of tools are detailed below.

3.1 Supporting JMSL classes
On the JMSL side, the essential new classes are

MaxInstrument, MaxDimensionNameSpace, and
JMSLInstrumentToMax. MaxInstrument is a JMSL
Instrument which sends time-stamped performance data to a
static instance of JMSLInstrumentToMax. The latter is a
subclass of MaxObject, and so provides the actual conduit
from Java to Max. After repackaging the data passed to it
from a MaxInstrument as an array of float,
JMSLInstrumentToMax passes it to its Max outlet().
JMSLInstrumentToMax is also responsible for synching
JMSL’s clock to Max’s clock, and translating JMSL
timestamps to Max timestamps. Through this scheme, the
composer can take advantage of JMSL’s polymorphic
hierarchical scheduler to create flexible musical forms and
output to Max/MSP.

More details about MaxInstrument JMSL has a well-
defined Instrument interface which we leverage as the
means to send performance data to Max. Instrument defines
the following methods:

public Object on(double playTime, double

timeStretch, double dar[])

public Object off(double playTime, double

timeStretch, double[] dar)

public double play(double playtime, double

timeStretch, double[] data)

public double update(double playtime, double

timeStretch, double[] data)

All Instrument methods receive a time stamp,

performance data, and a “timestretch” value to scale
duration. The on() method will typically start a sound, while
off() will turn it off. Play() is used to sound a voice at a
particular time, and sustain it for a specified “hold” time.
Finally, update() is used to change parameters on a voice
that was either started with a call to on(), or a voice that is
still sustaining from play().

JMSL Instruments also contain a DimensionNameSpace,
which is a map of indexes (array positions 0, 1, 2, 3...) to
meaningful names like “duration”, “pitch”, “amplitude”,
“hold”, etc. The new MaxDimensionNameSpace adds a
dimension called “EventFlag” which is used by Max to
identify incoming data as on(), off(), play(), or update().
Dimensions with an index higher than 4 can be given
custom interpretation, such as “slew”, “cutoff”, etc. The
composer may use JMSL’s DimensionNameSpaceEditor
(fig 3) to create a custom MaxDimensionNameSpace that is
meaningful for a particular MSP patch. Of course, the
DimensionNameSpace may also be generated
programmatically.

Figure 3. JMSL’s DimensionNameSpaceEditor specifies

custom dimension names for an MSP patch

Each MaxInstrument maintains an index that identifies
itself uniquely. When on(), off(), play(), or update() are
called during a JMSL performance, MaxInstrument passes
incoming playtime, timeStretch, performance data, and

instrument index to Max via the static
JMSLInstrumentToMax conduit. Each method sets the
appropriate eventflag in data[4], identifying the event as
having resulted from a call to on(), off(), play(), or update().

Details about JMSLInstrumentToMax When
JMSLInstrumentToMax is instantiated, the first thing it does
is synch JMSL.clock’s current time to MaxClock’s current
time. From that moment on, JMSL time can be converted to
a Max timestamp.

 JMSLInstrumentToMax receives performance data
from MaxInstrument through its sendToMax() method. It
prepares a float[] array and loads it with values relevant to
Max, dropping values that are only meaningful to JMSL.
For example duration, which is the time between events
scheduled by JMSL, is not passed to Max, nor is timestretch
(we elect to scale sustain time before passing to Max). To
summarize, the sendToMax() method packs an array with
the following data before passing it to its outlet():

arr[0] MaxInstrument index
arr[1] MaxClock timestamp
arr[2] pitch (fractional pitches ok)
arr[3] amplitude (0..1)
arr[4] hold (ie sustain time)
arr[5..n] timbral values

3.2 Supporting Max Objects
Figure 4 shows a demo patch which ships with JMSL.

When the user clicks the NewJMSLScore object, an empty
JMSL Score opens, each staff assigned to a different
MaxInstrument. Notes entered on a staff send their
performance data to Max via the play() method. Each note
can be edited so that different MSP synthesis parameters
may be assigned to each (this can be done programmatically
as well). Notes that are tied-in send their performance data
to Max with a call to update(). Each tied-in note can also
have different synthesis parameters, causing a sounding
note’s timbre to change over time.

While this demo uses common music notation, we
emphasize that the model presented here is independent of
notation. MaxInstruments can be performed by any JMSL
Composable, in very abstract musical contexts. Also, since
MaxInstrument supports on(), update(), and off(), real-time
voice allocation and synthesis updates is implemented,
allowing for musical forms that do not require prior “note-
like” knowledge of how long a sound will last.

JMSLInstrumentToMax Any Java subclass of
MaxObject can be instantiated in Max with an object box
containing [mxj package.class]. JMSLInstrumentToMax is a
MaxObject and provides the entry point for Max’s receipt of
real-time JMSL performance data.

As performance data arrives in JMSLInstrumentToMax,
we first pass it through a [route] object to determine the
MaxInstrument index. Figure 4 shows instrument 0 being
sent to a square wave MSP patch while instrument 1 is sent
to a sine patch.

Figure 4 JMSL performance data sent to two MSP patches

Polyphonic voice allocation The routed data is sent to
[jmsltomax], which encapsulates two objects, [mspmap] and
[VoiceSet]. The former reformats incoming data in a
manner compatible with MSP (a different formatter is
available for [csound~], another for [rtcmix~]). The
[VoiceSet] patch handles polyphonic voice allocation and
retrieval (see fig 5). It sends event and parameter data to the
appropriate voice number in the [poly~] patch. The voice
number is assigned based on the pitch parameter and the
event flag. Each event with an event flag of 3 (play) or 1
(on) gets a new voice. The pitch and voice number are then
stored in a lookup table, for later reference if needed. Event
flagged as 2 (update) or 0 (off) require parameter data to be
sent to the voice which is playing the sound associated with
the same pitch. The pitch parameter is used to look up
which voice is currently playing that pitch. A second
lookup table is used to make sure voices that are busy
sounding sustaining notes are not interrupted. If all the
voices in the [poly~] patch are sustaining, voice stealing is
implemented. The event flags 1 (on) and 2 (update) set a
voice as busy. The event flags 3 (play) and 0 (off) set the
voice as not busy. Parameter data can be passed to busy
voices when the event flag is set to 2 (update) and 0 (off),
thus allowing for continuous control timbre parameters in
currently sounding voices.

Time stamped musical output JMSL’s scheduler
corrects for timing variations inherent in Java Threads. By
scheduling an event a little in the future, vagaries in Thread
scheduling or complex calculations can be absorbed so long
as they do not take more time than the advance time window
(Anderson/Kuivila 1986). Provided that the underlying
sound engine supports accurate future time-stamped output,
erratic timing and other loads presented by computation or
system activity will not interfere with rhythmic accuracy.

Figure 5. Polyphonic voice allocation and retrieval

Unfortunately, in Max all events happen in the present,
so the creation of an object to handle time-stamped future
events was required. The [offset] patch addresses this issue
(see fig 6). It examines an incoming event’s timestamp,
compares it to the current Max time, and delays the event
for the difference. It cannot handle timestamps arriving out
of order, but since JMSL’s scheduler assures us that
timestamps do arrive in sorted order, this scheme works
nicely.

This timing offset patch is placed inside each voice so
that timing for every note may be delayed exactly as short or
long as needed. Each delay line is cleared before starting the
next delay so no old data is accidentally passed through.

Figure 6 The [offset] patch delays time-stamped events until

a specified future time

Substituting your own MSP patch It is straightforward to
substitute custom MSP patches into this model. Easiest is to
open one of the patches that ships with the demo, and save a
copy under a new name (see fig 7). Then open the sub
patcher labeled [p synth] and plug in a new circuit as
desired. The custom MSP patch will receive at least 5
parameters which should be unpacked: Pitch, amplitude,
duration (sec), event type (0..3) and timestamp. Parameters

above that can be unpacked and connected as necessary to
custom inlets, thus providing full control over the user’s
own MSP sounds.

Figure 7 Support for custom MSP patches.

4 Conclusion
Max’s Java API opens the way for bidirectional

communication between JMSL and Max/MSP. JMSL can
receive and process data generated algorithmically by Max,
and to illustrate we presented a tool that transcribes Max-
generated melodies to common music notation in JMSL.
Conversely, Max users can leverage off the flexible
polymorphic hierarchical scheduler and musical abstractions
provided by JMSL, and pipe JMSL-generated performance
data to Max/MSP, CSound, and RTcmix. Using JMSL and
Max together offers composers rich new musical
possibilities.

References
Anderson, D. P. and R. Kuivila, (1986) "Accurately Timed

Generation of Discrete Musical Events", Computer Music
Journal, Vol. 10, No. 3, pp. 48-56.

Burk, P.L., (1998). "JSyn - A Real-time Synthesis API for Java."
Proceedings of the International Computer Music Conference.
International Computer Music Association, pp. 252-255.

Didkovsky, N. (2004). "Java Music Specification Language, v103
update" Proceedings of the International Computer Music
Conference. International Computer Music Association, pp.
742-745.

Didkovsky, N., Burk, P.L., (2001). "Java Music Specification
Language, an introduction and overview" Proceedings of the
International Computer Music Conference. International
Computer Music Association, pp. 123-126.

Puckette, M., Zicarelli, D. MAX Development Package. Opcode
Systems, Inc., 1991.

